
Copyright © 2005, by Object Computing, Inc. (OCI).  
All rights reserved.

Distributed Ruby

Mark Volkmann
Object Computing, Inc.

9/27/2005



����������	
����

Copyright © 2005, by Object Computing, Inc. (OCI).  
All rights reserved.

Distributed Ruby
• Two forms of creating distributed applications

ship with Ruby
• 1) dRuby or drb

– remote object communication similar to Java RMI

• 2) Rinda
– a tuplespace implementation



����������	
����

Copyright © 2005, by Object Computing, Inc. (OCI).  
All rights reserved.

dRuby Overview
• Allows objects in one process to

invoke methods on objects in another process
– remote method invocation with “servers” and “clients”
– processes can be on different hosts

• Doesn’t use or interact with other distributed architectures
– such as .NET, RMI and CORBA

• No server lookup provided
– nothing like CORBA naming or trader service
– clients must know host and port of “servers” they wish to use

• Both sides must have source code
for classes of all objects passed
– not like Java RMI which passes bytecode for classes at runtime



����������	
����

Copyright © 2005, by Object Computing, Inc. (OCI).  
All rights reserved.

dRuby Overview (Cont’d)
• One host/port per “initial object”

– a.k.a. “front object” or “server”
– but those objects can have methods that

return remote references to other objects

• Objects passed to or returned from server methods
can be passed
– by value

• makes a copy so changes made by server aren’t seen by client
• serialized using Marshal module

– by reference
• remotely accessible
• faster when passing large objects; avoids marshalling them
• uses DRbObject objects (more on this later)

• Security
– provided by IP-address-based ACLs
– covered later



����������	
����

Copyright © 2005, by Object Computing, Inc. (OCI).  
All rights reserved.

Obtaining dRuby
• Core classes are provided with Ruby
• Full package

– download from 
http://www2a.biglobe.ne.jp/~seki/ruby/druby.en.html

• see “Download” link

– also contains Rinda source files

Currently there are only a couple 
of .rb files in this that aren’t
in the Ruby distribution …
invokemethod16.rb and udp.rb



����������	
����

Copyright © 2005, by Object Computing, Inc. (OCI).  
All rights reserved.

Why Access Remote Objects?
• To access services that do not provide a code download
• To offload processing to another host

– creating a distributed application

• To control access to a shared resource
– such as a database

• And others …



����������	
����

Copyright © 2005, by Object Computing, Inc. (OCI).  
All rights reserved.

Writing a Server
class MyServer
def get_greeting(name)
return "Hello #{name}!"

end

end

require 'drb'

# Set to nil to use localhost and allow drb to pick port.

uri = "druby://host:port"

initial_object = MyServer.new
DRb.start_service(uri, initial_object)
puts "URI is #{DRb.uri}" # useful when uri is nil

DRb.thread.join # don't exit so requests can be processed

Ctrl-c to exit under Unix;
Ctrl-Break under Windows



����������	
����

Copyright © 2005, by Object Computing, Inc. (OCI).  
All rights reserved.

Writing a Client
require 'drb'

DRb.start_service

uri = 'druby://host:port'
proxy = DRbObject.new(nil, uri)
proxy = DRbObject.new_with_uri(uri) # same as previous line

puts proxy.get_greeting('Mark') # outputs "Hello Mark!"

local object for which a proxy is needed;
nil when creating a proxy for a given uri

only needed if the client returns
object references to the server;
allows the client to act as a server
when methods on those objects are invoked



����������	
����

Copyright © 2005, by Object Computing, Inc. (OCI).  
All rights reserved.

Parameter & Return Value Marshaling
• Default behavior is pass-by-value

– uses built-in Marshal module
• marshals most kinds of objects

along with all objects reachable from them
• implemented in C; very fast

– some kinds of objects cannot be marshaled
so are always passed by reference
• Binding, Proc, IO and singleton objects

• Can pass and return remote references
– represented by DRbObject objects



����������	
����

Copyright © 2005, by Object Computing, Inc. (OCI).  
All rights reserved.

Parameter & Return Value Marshaling (Cont’d)
• Ways to prevent marshaling and force pass-by-reference

– approach #1: include DRbUndumped in class
class Car

include DRbUndumped

...

end

– approach #2: extend an object with DRbUndumped
myCar = Car.new ...

myCar.extend DRbUndumped

– approach #3: explicitly pass a DRbObject
myCar = Car.new ...

objToPass = DRbObject.new(myCar)

• Can customize what and how attributes are marshaled
– see pickaxe p. 415

all objects created from this class 
will be passed by reference
using DRbObject

if passed to a remote method, a 
DRbObject will actually be passed



����������	
����

Copyright © 2005, by Object Computing, Inc. (OCI).  
All rights reserved.

Marshal Example
class Car

attr_accessor :make, :model, 
:year, :owner

def to_s

"#{year} #{make} #{model} " +

"owned by #{owner}"

end

end

class Person

attr_accessor :name

def initialize(name)

@name = name

end

def to_s

name

end

end

me = Person.new("Mark Volkmann")

car = Car.new

car.make = 'BMW'

car.model = 'Z3'

car.year = 2001

car.owner = me

File.open("car.rbm", "w+") do |f|

Marshal.dump(car, f)

end

File.open("car.rbm") do |f|

unmarshaled_car = Marshal.load(f)

puts unmarshaled_car

end

outputs “2001 BMW Z3 owned by Mark Volkmann”

write new file
if already exists



����������	
����

Copyright © 2005, by Object Computing, Inc. (OCI).  
All rights reserved.

Threading
• Each remote method invocation

is handled by a new server thread
– so multiple clients don’t block each other

• Consider handling of concurrent requests
when implementing server methods
– can use Monitor, Mutex or Sync libraries

to provide synchronized access to data



����������	
����

Copyright © 2005, by Object Computing, Inc. (OCI).  
All rights reserved.

Safety
• Tainted data

– any data not create or modified by local Ruby code

• Value $SAFE global variable controls safety restrictions 
enforced by the Ruby interpreter
– 0 (default)

• no checking for use of tainted data

– >= 1
• tainted data cannot be used

by some methods such as eval

– >= 2
• disallows loading Ruby code from “globally writable locations”

– means all users on the system have write permission

– >= 3
• newly created objects are marked as tainted

– >= 4
• disallows modification of non-tainted objects

Set $SAFE to 1 or higher in server code
to disable use of Kernel.eval
and Object.instance_eval
so clients can’t execute
arbitrary Ruby code in server.
An example of this is in the comments
at the top of drb/drb.rb.

can’t get this to work

can’t get this to work



����������	
����

Copyright © 2005, by Object Computing, Inc. (OCI).  
All rights reserved.

Security with Access Control Lists
• ACL class is part of dRuby
• Constructor takes an array of strings

– can create with %w

• Example
acl = ACL.new %w(

deny all

allow localhost

allow 130.76.110.*)

DRb.install_acl acl

allows access from same host
or any host whose IP address
starts with 130.76.110

get a DRb::DRbConnError
in client when access is blocked



����������	
����

Copyright © 2005, by Object Computing, Inc. (OCI).  
All rights reserved.

dRuby Components
• Three main components

– remote method call marshaller/unmarshaller
• uses the Marshal module

– transport protocol
• opens network connections and sends messages across them
• manages marshalling with DRb::DRbMessage
• protocol is selected by the scheme at the front of URIs

– the scheme druby: uses DRb::DRbTCPSocket
which uses TCP/IP sockets

– a sample using HTTP is included

– id to object mapper
• remote references map to objects using host, port and object id
• by default, maps dRuby ids to objects using DRb::DRbIdConv
• this uses the ObjectSpace ids assigned to objects

– only valid for life of process that created the objects

• Can override each component
– to provide different behavior

can configure to use SSH or SSL;
see RubyGarden DrbTutorial



����������	
����

Copyright © 2005, by Object Computing, Inc. (OCI).  
All rights reserved.

dRuby Documentation
• Comments at top of drb/drb.rb

– Masatoshi Seki

• Intro to DRb
– Chad Fowler
– http://www.chadfowler.com/ruby/drb.html

• DrbTutorial
– http://www.rubygarden.org/ruby?DrbTutorial
– describes configuration to use SSH and SSL

• Where Ruby Really Sparkles
– Dave Thomas
– http://www.linux-mag.com/2002-09/ruby_01.html



����������	
����

Copyright © 2005, by Object Computing, Inc. (OCI).  
All rights reserved.

Tuplespace Overview
• Began with “Linda”

– see “About Linda” at
http://www-users.cs.york.ac.uk/~aw/pylinda/about.html

• Terminology
– Tuple

• an ordered collections of values (objects in Ruby)

– Tuplespace
• shared memory that holds tuples

– sometimes referred to as a whiteboard or bulletin board

– Template
• a tuple where some values are names of data types or patterns
• used to match tuples

• Basic operations
– add a tuple to a tuplespace
– read a tuple matching a template from a tuplespace, leaving it there
– remove a tuple matching a template from a tuplespace



����������	
����

Copyright © 2005, by Object Computing, Inc. (OCI).  
All rights reserved.

Tuplespace Overview (Cont’d)
• Processes generally perform these steps

– wait for a tuple matching a given template
to appear in a given tuplespace

– remove the tuple from the tuplespace
– operate on the tuple
– create a new tuple describing the result
– add the new tuple to a tuplespace
– some other process will operate on that tuple

• Cooperating processes
– processes don’t know about or communicate with each other
– they simply add tuples to and remove tuples from tuplespaces



����������	
����

Copyright © 2005, by Object Computing, Inc. (OCI).  
All rights reserved.

Uses For Tuplespaces
• Global persistent communication buffer

– tuplespaces persist data as tuples
– distributed processes can read and write tuples

as a way of communicating with each other 

• Lightweight database
– tuplespaces are databases and tuples are records

• Queue manager
– simple form of IBM's MQ Series
– think publish (write tuples) and

subscribe (block while waiting for certain tuples to appear)

• Dynamic computation engine
– breaking a complex computation into parts

that are each computed when their inputs are available

• Simulation
– model real world processes

that have dependencies between each other



����������	
����

Copyright © 2005, by Object Computing, Inc. (OCI).  
All rights reserved.

Rinda
• Ruby tuplespace implementation

– based on “Linda”
– similar to Java’s “JavaSpaces”
– built on top of dRuby

• To use
require 'rinda/tuplespace'

• Classes to use
– tuples are just arrays

• but are represented as Rinda::TupleEntry objects inside Rinda

– tuplespaces are Rinda::TupleSpace objects
– proxies for communicating with tuplespaces are 

Rinda::TupleSpaceProxy objects



����������	
����

Copyright © 2005, by Object Computing, Inc. (OCI).  
All rights reserved.

Rinda::TupleSpaceProxy Class
• Methods

– new
• creates a new TupleSpaceProxy for a TupleSpace at a given URI

– write
• writes a tuple into a TupleSpace
• optional last parameter specifies expiration time in seconds

– take
• blocks until a matching tuple appears in a TupleSpace,

then removes it and returns it
• optional last parameter specifies timeout in seconds
• throws Rinda::RequestExpiredError if not found within timeout

– read
• same as take, but doesn’t remove tuple from TupleSpace

– read_all
• reads all matching tuples from a TupleSpace

without blocking and returns them in an array
• returns an empty array if no matches are found

in take and read,
if multiple matches are found, 
any one can be returned



����������	
����

Copyright © 2005, by Object Computing, Inc. (OCI).  
All rights reserved.

Rinda::TupleSpaceProxy Class (Cont’d)
• Methods (cont’d)

– notify
• notifies a client that one of the following has occurred

– 'write' – a tuple was added to a given TupleSpace
– 'take' – a tuple was taken from a given TupleSpace
– 'delete' – a tuple was lost from a given TupleSpace

because it was overwritten or it expired
– 'close' – the notification request expired (timed out)

what does 
“overwritten”
mean?



����������	
����

Copyright © 2005, by Object Computing, Inc. (OCI).  
All rights reserved.

Rinda Example
• common.rb

– shared by whiteboard, client and server
require 'rinda/tuplespace'

WHITEBOARD_URI = 'druby://localhost:1919'

• whiteboard.rb
– run this first
require 'common'

DRb.start_service(WHITEBOARD_URI, Rinda::TupleSpace.new)
DRb.thread.join # don't exit

based on example in Pickaxe 2



����������	
����

Copyright © 2005, by Object Computing, Inc. (OCI).  
All rights reserved.

Rinda Example (Cont’d)
• server.rb

– run this second

require 'common'

DRb.start_service

ts = Rinda::TupleSpaceProxy.new(
DRbObject.new_with_uri(WHITEBOARD_URI))

# Note that "-" must be the first character in the character class.

# Otherwise it will be interpreted as a range delimiter.

operation_pattern = %r{^[-+*/]$}

loop do

op, p1, p2 = ts.take [operation_pattern, Numeric, Numeric]

ts.write ['result', p1.send(op, p2)]

end



����������	
����

Copyright © 2005, by Object Computing, Inc. (OCI).  
All rights reserved.

Rinda Example (Cont’d)
• client.rb

– run this third

require 'common'

DRb.start_service

ts = Rinda::TupleSpaceProxy.new(
DRbObject.new_with_uri(WHITEBOARD_URI))

ts.write ['+', 19, 3]

# nil in a tuple template means accept any type

result = ts.take ['result', Numeric]

puts result[1] # just want 2nd piece of data in result tuple

Issue
the result tuple may actually be
intended for a different client;
consider tagging tuples with a client id



����������	
����

Copyright © 2005, by Object Computing, Inc. (OCI).  
All rights reserved.

Rinda Documentation
• Where Ruby Really Sparkles

– Dave Thomas
– http://www.linux-mag.com/2002-09/ruby_01.html

• There’s really very little documentation on Rinda!


