In Files

  • openssl/lib/openssl/digest.rb
  • openssl/ossl.c

Class/Module Index [+]

Quicksearch

OpenSSL::Digest

OpenSSL::Digest allows you to compute message digests (sometimes interchangeably called "hashes") of arbitrary data that are cryptographically secure, i.e. a Digest implements a secure one-way function.

One-way functions offer some useful properties. E.g. given two distinct inputs the probability that both yield the same output is highly unlikely. Combined with the fact that every message digest algorithm has a fixed-length output of just a few bytes, digests are often used to create unique identifiers for arbitrary data. A common example is the creation of a unique id for binary documents that are stored in a database.

Another useful characteristic of one-way functions (and thus the name) is that given a digest there is no indication about the original data that produced it, i.e. the only way to identify the original input is to "brute-force" through every possible combination of inputs.

These characteristics make one-way functions also ideal companions for public key signature algorithms: instead of signing an entire document, first a hash of the document is produced with a considerably faster message digest algorithm and only the few bytes of its output need to be signed using the slower public key algorithm. To validate the integrity of a signed document, it suffices to re-compute the hash and verify that it is equal to that in the signature.

Among the supported message digest algorithms are:

  • SHA, SHA1, SHA224, SHA256, SHA384 and SHA512

  • MD2, MD4, MDC2 and MD5

  • RIPEMD160

  • DSS, DSS1 (Pseudo algorithms to be used for DSA signatures. DSS is equal to SHA and DSS1 is equal to SHA1)

For each of these algorithms, there is a sub-class of Digest that can be instantiated as simply as e.g.

digest = OpenSSL::Digest::SHA1.new

Mapping between Digest class and sn/ln

The sn (short names) and ln (long names) are defined in <openssl/object.h> and <openssl/obj_mac.h>. They are textual representations of ASN.1 OBJECT IDENTIFIERs. Each supported digest algorithm has an OBJECT IDENTIFIER associated to it and those again have short/long names assigned to them. E.g. the OBJECT IDENTIFIER for SHA-1 is 1.3.14.3.2.26 and its sn is "SHA1" and its ln is "sha1".

MD2

  • sn: MD2

  • ln: md2

MD4

  • sn: MD4

  • ln: md4

MD5

  • sn: MD5

  • ln: md5

SHA

  • sn: SHA

  • ln: SHA

SHA-1

  • sn: SHA1

  • ln: sha1

SHA-224

  • sn: SHA224

  • ln: sha224

SHA-256

  • sn: SHA256

  • ln: sha256

SHA-384

  • sn: SHA384

  • ln: sha384

SHA-512

  • sn: SHA512

  • ln: sha512

"Breaking" a message digest algorithm means defying its one-way function characteristics, i.e. producing a collision or finding a way to get to the original data by means that are more efficient than brute-forcing etc. Most of the supported digest algorithms can be considered broken in this sense, even the very popular MD5 and SHA1 algorithms. Should security be your highest concern, then you should probably rely on SHA224, SHA256, SHA384 or SHA512.

Hashing a file

data = File.read('document')
sha256 = OpenSSL::Digest::SHA256.new
digest = sha256.digest(data)

Hashing several pieces of data at once

data1 = File.read('file1')
data2 = File.read('file2')
data3 = File.read('file3')
sha256 = OpenSSL::Digest::SHA256.new
sha256 << data1
sha256 << data2
sha256 << data3
digest = sha256.digest

Reuse a Digest instance

data1 = File.read('file1')
sha256 = OpenSSL::Digest::SHA256.new
digest1 = sha256.digest(data1)

data2 = File.read('file2')
sha256.reset
digest2 = sha256.digest(data2)

Public Class Methods

digest(name, data) click to toggle source

Return the data hash computed with name Digest. name is either the long name or short name of a supported digest algorithm.

Examples

OpenSSL::Digest.digest("SHA256", "abc")

which is equivalent to:

OpenSSL::Digest::SHA256.digest("abc")
 
               # File openssl/lib/openssl/digest.rb, line 40
def self.digest(name, data)
    super(data, name)
end
            
new(string [, data]) → Digest click to toggle source

Creates a Digest instance based on string, which is either the ln (long name) or sn (short name) of a supported digest algorithm. If data (a String) is given, it is used as the initial input to the Digest instance, i.e.

digest = OpenSSL::Digest.new('sha256', 'digestdata')

is equal to

digest = OpenSSL::Digest.new('sha256')
digest.update('digestdata')

Example

digest = OpenSSL::Digest.new('sha1')
 
               static VALUE
ossl_digest_initialize(int argc, VALUE *argv, VALUE self)
{
    EVP_MD_CTX *ctx;
    const EVP_MD *md;
    VALUE type, data;

    rb_scan_args(argc, argv, "11", &type, &data);
    md = GetDigestPtr(type);
    if (!NIL_P(data)) StringValue(data);

    GetDigest(self, ctx);
    if (EVP_DigestInit_ex(ctx, md, NULL) != 1) {
        ossl_raise(eDigestError, "Digest initialization failed.");
    }

    if (!NIL_P(data)) return ossl_digest_update(self, data);
    return self;
}
            

Public Instance Methods

<<(p1) click to toggle source
Alias for: update
block_length → integer click to toggle source

Returns the block length of the digest algorithm, i.e. the length in bytes of an individual block. Most modern algorithms partition a message to be digested into a sequence of fix-sized blocks that are processed consecutively.

Example

digest = OpenSSL::Digest::SHA1.new
puts digest.block_length # => 64
 
               static VALUE
ossl_digest_block_length(VALUE self)
{
    EVP_MD_CTX *ctx;

    GetDigest(self, ctx);

    return INT2NUM(EVP_MD_CTX_block_size(ctx));
}
            
digest_length → integer click to toggle source

Returns the output size of the digest, i.e. the length in bytes of the final message digest result.

Example

digest = OpenSSL::Digest::SHA1.new
puts digest.digest_length # => 20
 
               static VALUE
ossl_digest_size(VALUE self)
{
    EVP_MD_CTX *ctx;

    GetDigest(self, ctx);

    return INT2NUM(EVP_MD_CTX_size(ctx));
}
            
name → string click to toggle source

Returns the sn of this Digest instance.

Example

digest = OpenSSL::Digest::SHA512.new
puts digest.name # => SHA512
 
               static VALUE
ossl_digest_name(VALUE self)
{
    EVP_MD_CTX *ctx;

    GetDigest(self, ctx);

    return rb_str_new2(EVP_MD_name(EVP_MD_CTX_md(ctx)));
}
            
reset → self click to toggle source

Resets the Digest in the sense that any #update that has been performed is abandoned and the Digest is set to its initial state again.

 
               static VALUE
ossl_digest_reset(VALUE self)
{
    EVP_MD_CTX *ctx;

    GetDigest(self, ctx);
    if (EVP_DigestInit_ex(ctx, EVP_MD_CTX_md(ctx), NULL) != 1) {
        ossl_raise(eDigestError, "Digest initialization failed.");
    }

    return self;
}
            
update(string) → aString click to toggle source

Not every message digest can be computed in one single pass. If a message digest is to be computed from several subsequent sources, then each may be passed individually to the Digest instance.

Example

digest = OpenSSL::Digest::SHA256.new
digest.update('First input')
digest << 'Second input' # equivalent to digest.update('Second input')
result = digest.digest
 
               VALUE
ossl_digest_update(VALUE self, VALUE data)
{
    EVP_MD_CTX *ctx;

    StringValue(data);
    GetDigest(self, ctx);
    EVP_DigestUpdate(ctx, RSTRING_PTR(data), RSTRING_LEN(data));

    return self;
}
            
Also aliased as: <<

Commenting is here to help enhance the documentation. For example, code samples, or clarification of the documentation.

If you have questions about Ruby or the documentation, please post to one of the Ruby mailing lists. You will get better, faster, help that way.

If you wish to post a correction of the docs, please do so, but also file bug report so that it can be corrected for the next release. Thank you.

If you want to help improve the Ruby documentation, please visit Documenting-ruby.org.

blog comments powered by Disqus